cs.AI updates on arXiv.org 10月28日 12:06
可持续AI框架:HAI的构建与优势
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文批判了当前对大规模静态数据集和单一训练模式的依赖,提出了一种名为HAI的新型框架,强调增量学习、碳感知优化和人类参与协作,以提升AI的适应性和效率,同时降低环境影响。

arXiv:2510.23524v1 Announce Type: new Abstract: The rapid advancement of Artificial Intelligence (AI) has led to unprecedented computational demands, raising significant environmental and ethical concerns. This paper critiques the prevailing reliance on large-scale, static datasets and monolithic training paradigms, advocating for a shift toward human-inspired, sustainable AI solutions. We introduce a novel framework, Human AI (HAI), which emphasizes incremental learning, carbon-aware optimization, and human-in-the-loop collaboration to enhance adaptability, efficiency, and accountability. By drawing parallels with biological cognition and leveraging dynamic architectures, HAI seeks to balance performance with ecological responsibility. We detail the theoretical foundations, system design, and operational principles that enable AI to learn continuously and contextually while minimizing carbon footprints and human annotation costs. Our approach addresses pressing challenges in active learning, continual adaptation, and energy-efficient model deployment, offering a pathway toward responsible, human-centered artificial intelligence.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 可持续性 HAI框架 增量学习 碳感知优化
相关文章