cs.AI updates on arXiv.org 10月28日 12:06
基于LLM的企业访问决策控制器
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用大型语言模型(LLM)解释自然语言请求的访问决策控制器,以实现最小权限、合规性和可审计性。通过六阶段推理框架,该系统提高了决策准确性,并确保了合规性和安全性。

arXiv:2510.23474v1 Announce Type: new Abstract: Enterprises need access decisions that satisfy least privilege, comply with regulations, and remain auditable. We present a policy aware controller that uses a large language model (LLM) to interpret natural language requests against written policies and metadata, not raw data. The system, implemented with Google Gemini~2.0 Flash, executes a six-stage reasoning framework (context interpretation, user validation, data classification, business purpose test, compliance mapping, and risk synthesis) with early hard policy gates and deny by default. It returns APPROVE, DENY, CONDITIONAL together with cited controls and a machine readable rationale. We evaluate on fourteen canonical cases across seven scenario families using a privacy preserving benchmark. Results show Exact Decision Match improving from 10/14 to 13/14 (92.9\%) after applying policy gates, DENY recall rising to 1.00, False Approval Rate on must-deny families dropping to 0, and Functional Appropriateness and Compliance Adherence at 14/14. Expert ratings of rationale quality are high, and median latency is under one minute. These findings indicate that policy constrained LLM reasoning, combined with explicit gates and audit trails, can translate human readable policies into safe, compliant, and traceable machine decisions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 访问决策 合规性 可审计性
相关文章