cs.AI updates on arXiv.org 10月28日 12:04
ProfileXAI:模型无关的智能解释框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为ProfileXAI的模型无关框架,该框架结合了后置解释器(SHAP、LIME、Anchor)与检索增强的LLM,生成不同类型用户的解释。在心脏疾病和甲状腺癌数据集上,通过评估忠实度、鲁棒性、简洁性、标记使用和感知质量,发现没有一种解释器占优,且Profile conditioning稳定标记并保持正面评价。

arXiv:2510.22998v1 Announce Type: new Abstract: ProfileXAI is a model- and domain-agnostic framework that couples post-hoc explainers (SHAP, LIME, Anchor) with retrieval - augmented LLMs to produce explanations for different types of users. The system indexes a multimodal knowledge base, selects an explainer per instance via quantitative criteria, and generates grounded narratives with chat-enabled prompting. On Heart Disease and Thyroid Cancer datasets, we evaluate fidelity, robustness, parsimony, token use, and perceived quality. No explainer dominates: LIME achieves the best fidelity--robustness trade-off (Infidelity $\le 0.30$, $L<0.7$ on Heart Disease); Anchor yields the sparsest, low-token rules; SHAP attains the highest satisfaction ($\bar{x}=4.1$). Profile conditioning stabilizes tokens ($\sigma \le 13\%$) and maintains positive ratings across profiles ($\bar{x}\ge 3.7$, with domain experts at $3.77$), enabling efficient and trustworthy explanations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ProfileXAI 模型无关 智能解释 LLM 数据集评估
相关文章