cs.AI updates on arXiv.org 10月28日 12:03
ATOM:动态知识图谱构建新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ATOM的动态知识图谱构建方法,通过从非结构化文本中提取原子事实,构建并更新时序知识图谱,提高了知识提取的全面性和稳定性。

arXiv:2510.22590v1 Announce Type: new Abstract: In today's rapidly expanding data landscape, knowledge extraction from unstructured text is vital for real-time analytics, temporal inference, and dynamic memory frameworks. However, traditional static knowledge graph (KG) construction often overlooks the dynamic and time-sensitive nature of real-world data, limiting adaptability to continuous changes. Moreover, recent zero- or few-shot approaches that avoid domain-specific fine-tuning or reliance on prebuilt ontologies often suffer from instability across multiple runs, as well as incomplete coverage of key facts. To address these challenges, we introduce ATOM (AdapTive and OptiMized), a few-shot and scalable approach that builds and continuously updates Temporal Knowledge Graphs (TKGs) from unstructured texts. ATOM splits input documents into minimal, self-contained "atomic" facts, improving extraction exhaustivity and stability. Then, it constructs atomic TKGs from these facts while employing a dual-time modeling that distinguishes when information is observed from when it is valid. The resulting atomic TKGs are subsequently merged in parallel. Empirical evaluations demonstrate that ATOM achieves ~18% higher exhaustivity, ~17% better stability, and over 90% latency reduction compared to baseline methods, demonstrating a strong scalability potential for dynamic TKG construction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

动态知识图谱 知识提取 原子事实 时序建模
相关文章