machinelearning apple 10月28日 04:25
MeBP:移动设备高效微调LLMs新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种在移动设备上高效微调大型语言模型(LLMs)的新方法MeBP,该方法在内存使用和计算时间之间提供了更好的平衡,并实现了比零阶优化(ZO)基线更快的收敛速度和更好的性能。

Fine-tuning large language models (LLMs) with backpropagation — even for a subset of parameters such as LoRA — can be much more memory-consuming than inference and is often deemed impractical for resource-constrained mobile devices. Alternative methods, such as zeroth-order optimization (ZO), can greatly reduce the memory footprint but come at the cost of significantly slower model convergence (10× to 100× more steps than backpropagation). We propose a memory-efficient implementation of backpropagation (MeBP) on mobile devices that provides better trade-off between memory usage and compute time, while converging faster and achieving better performance than the ZO baseline. We verify the effectiveness of MeBP on an iPhone 15 Pro Max and show that various LLMs, ranging from 0.5B to 4B parameters, can be fine-tuned using less than 1GB of memory.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 微调 MeBP 移动设备 性能提升
相关文章