Ars Technica - All content 20小时前
科学家模拟自然图案形成新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

科学家们正在探索自然界中斑马条纹和豹子斑点等复杂图案的形成机制。受数学家艾伦·图灵的启发,研究人员开发了一种新的模拟方法,通过引入微小的不完美之处,能够更精确地重现这些自然图案。该方法基于激活剂和抑制剂化学物质的相互作用,其中激活剂产生特定特征,而抑制剂则限制其扩散,从而在扩散速率差异的作用下形成斑点或条纹。这种图灵机制已被应用于解释大脑神经元活动、斑马鱼纹理、毛囊间距、鸟类羽毛以及哺乳动物的肢体发育等多种生物现象。

🔬 **图灵模式的自然启示**:斑马的条纹和豹子的斑点是典型的“图灵图案”,由数学家艾伦·图灵提出的化学物质相互作用机制来解释。该机制涉及一种激活剂和一种抑制剂,它们在扩散过程中相互作用,从而在系统中形成规律性的图案。

💡 **模拟方法的创新**:科罗拉多大学博尔德分校的科学家们提出了一种新的模拟方法,通过在模型中引入“故意的不完美之处”,能够更精确地再现自然界中的复杂图案。这种方法克服了图灵早期模型过于简化的局限性。

🌐 **广泛的应用潜力**:图灵机制不仅限于生物体的外在形态,还可能解释大脑神经元活动、斑马鱼的条纹、小鼠毛囊的间距、鸟类羽毛的形成以及哺乳动物的肢体发育等多种生物学现象,显示了其在理解生命科学中的重要作用。

A mixture of two types of pigment-producing cells undergoes diffusiophoretic transport to self-assemble into a hexagonal pattern. Credit: Siamak Mirfendereski and Ankur Gupta/CU Boulder

A zebra’s distinctive black-and-white stripes, or a leopard’s spots, are both examples of “Turing patterns,” after mathematician and computer scientist Alan Turing, who proposed an intriguing hypothetical mechanism for how such complex, irregular patterns might emerge in nature. But Turing’s original proposal proved too simplified to fully recreate those natural patterns. Scientists at the University of Colorado at Boulder (UCB) have devised a new modeling approach that achieves much more accurate final patterns by introducing deliberate imperfections, according to a new paper published in the journal Matter.

Turing focused on chemicals known as morphogens in his seminal 1952 paper. He devised a mechanism involving the interaction between an activator chemical that expresses a unique characteristic (like a tiger’s stripe) and an inhibitor chemical that periodically kicks in to shut down the activator’s expression. Both activator and inhibitor diffuse throughout a system, much like gas atoms will do in an enclosed box. It’s a bit like injecting a drop of black ink into a beaker of water. Normally, this would stabilize a system, and the water would gradually turn a uniform gray. But if the inhibitor diffuses at a faster rate than the activator, the process is destabilized. That mechanism will produce spots or stripes.

Scientists have tried to apply this basic concept to many different kinds of systems. For instance, neurons in the brain could serve as activators and inhibitors, depending on whether they amplify or dampen the firing of other nearby neurons—possibly the reason why we see certain patterns when we hallucinate. There is evidence for Turing mechanisms at work in zebra-fish stripes, the spacing between hair follicles in mice, feather buds on a bird’s skin, the ridges on a mouse’s palate, and the digits on a mouse’s paw.

Read full article

Comments

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图灵模式 自然图案形成 生物学 模拟 Turing Patterns Natural Pattern Formation Biology Simulation
相关文章