cs.AI updates on arXiv.org 10月27日 14:27
DEEDEE:强化学习中的分布外检测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究强化学习中的分布外检测问题,提出了一种名为DEEDEE的检测器,通过使用简化的统计方法,实现了对分布外异常的检测,同时显著降低了计算复杂度。

arXiv:2510.21638v1 Announce Type: cross Abstract: Deploying reinforcement learning (RL) in safety-critical settings is constrained by brittleness under distribution shift. We study out-of-distribution (OOD) detection for RL time series and introduce DEEDEE, a two-statistic detector that revisits representation-heavy pipelines with a minimal alternative. DEEDEE uses only an episodewise mean and an RBF kernel similarity to a training summary, capturing complementary global and local deviations. Despite its simplicity, DEEDEE matches or surpasses contemporary detectors across standard RL OOD suites, delivering a 600-fold reduction in compute (FLOPs / wall-time) and an average 5% absolute accuracy gain over strong baselines. Conceptually, our results indicate that diverse anomaly types often imprint on RL trajectories through a small set of low-order statistics, suggesting a compact foundation for OOD detection in complex environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 分布外检测 DEEDEE 异常检测 计算效率
相关文章