cs.AI updates on arXiv.org 10月27日 14:25
新方法提升微调模型泛化能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型重参数化方法,旨在提升微调模型的泛化能力。通过高维二分类实验和LLMs微调实验验证了方法的有效性。

arXiv:2510.21345v1 Announce Type: cross Abstract: Fine-tuning has proven to be highly effective in adapting pre-trained models to perform better on new desired tasks with minimal data samples. Among the most widely used approaches are reparameterization methods, which update a target module by augmenting its frozen weight matrix with an additional trainable weight matrix. The most prominent example is Low Rank Adaption (LoRA), which gained significant attention in recent years. In this paper, we introduce a new class of reparameterization methods for transfer learning, designed to enhance the generalization ability of fine-tuned models. We establish the effectiveness of our approach in a high-dimensional binary classification setting using tools from Random Matrix Theory, and further validate our theoretical findings through more realistic experiments, such as fine-tuning LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

微调 泛化能力 重参数化 LLMs 微调模型
相关文章