cs.AI updates on arXiv.org 10月27日 14:24
PLAN:持续学习中的高效低秩分配框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为PLAN的框架,扩展了低秩自适应(LoRA)技术,以实现持续学习(CL)场景下大型预训练模型的高效和干扰感知微调。通过引入正交基向量,并采用基于扰动的优化策略,PLAN主动管理任务特定子空间的分配,同时通过新型选择机制降低干扰敏感性,以减少对过去知识的损害,并保持对新任务的适应效率。

arXiv:2510.21188v1 Announce Type: cross Abstract: Continual learning (CL) requires models to continuously adapt to new tasks without forgetting past knowledge. In this work, we propose \underline{P}roactive \underline{L}ow-rank \underline{A}llocatio\underline{N} (PLAN), a framework that extends Low-Rank Adaptation (LoRA) to enable efficient and interference-aware fine-tuning of large pre-trained models in CL settings. PLAN proactively manages the allocation of task-specific subspaces by introducing orthogonal basis vectors for each task and optimizing them through a perturbation-based strategy that minimizes conflicts with previously learned parameters. Furthermore, PLAN incorporates a novel selection mechanism that identifies and assigns basis vectors with minimal sensitivity to interference, reducing the risk of degrading past knowledge while maintaining efficient adaptation to new tasks. Empirical results on standard CL benchmarks demonstrate that PLAN consistently outperforms existing methods, establishing a new state-of-the-art for continual learning with foundation models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

持续学习 低秩自适应 预训练模型 干扰感知 微调
相关文章