cs.AI updates on arXiv.org 前天 14:24
MU-SplitFed:解决SFL中Straggler问题的算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MU-SplitFed的算法,旨在解决Split Federated Learning中Straggler问题,通过解耦训练进度与Straggler延迟,实现算法的稳定性和效率。

arXiv:2510.21155v1 Announce Type: cross Abstract: Split Federated Learning (SFL) enables scalable training on edge devices by combining the parallelism of Federated Learning (FL) with the computational offloading of Split Learning (SL). Despite its great success, SFL suffers significantly from the well-known straggler issue in distributed learning systems. This problem is exacerbated by the dependency between Split Server and clients: the Split Server side model update relies on receiving activations from clients. Such synchronization requirement introduces significant time latency, making straggler a critical bottleneck to the scalability and efficiency of the system. To mitigate this problem, we propose MU-SplitFed, a straggler-resilient SFL algorithm in zeroth-order optimization that decouples training progress from straggler delays via a simple yet effective unbalanced update mechanism. By enabling the server to perform $\tau$ local updates per client round, MU-SplitFed achieves a convergence rate of $O(\sqrt{d/(\tau T)})$ for non-convex objectives, demonstrating a linear speedup of $\tau$ in communication rounds. Experiments demonstrate that MU-SplitFed consistently outperforms baseline methods with the presence of stragglers and effectively mitigates their impact through adaptive tuning of $\tau$. The code for this project is available at https://github.com/Johnny-Zip/MU-SplitFed.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Split Federated Learning Straggler问题 算法 通信效率 优化
相关文章