cs.AI updates on arXiv.org 10月27日 14:22
物理约束神经操作器提升时空预测准确性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种物理约束神经操作器(PCNO),通过投影代理模型输出到满足预定义物理定律的函数空间来强制实施物理约束。基于此,进一步提出了扩散模型增强的PCNO(DiffPCNO),以量化并缓解不确定性,从而提高预测的准确性和可靠性。

arXiv:2510.21023v1 Announce Type: cross Abstract: Accurate long-term forecasting of spatiotemporal dynamics remains a fundamental challenge across scientific and engineering domains. Existing machine learning methods often neglect governing physical laws and fail to quantify inherent uncertainties in spatiotemporal predictions. To address these challenges, we introduce a physics-consistent neural operator (PCNO) that enforces physical constraints by projecting surrogate model outputs onto function spaces satisfying predefined laws. A physics-consistent projection layer within PCNO efficiently computes mass and momentum conservation in Fourier space. Building upon deterministic predictions, we further propose a diffusion model-enhanced PCNO (DiffPCNO), which leverages a consistency model to quantify and mitigate uncertainties, thereby improving the accuracy and reliability of forecasts. PCNO and DiffPCNO achieve high-fidelity spatiotemporal predictions while preserving physical consistency and uncertainty across diverse systems and spatial resolutions, ranging from turbulent flow modeling to real-world flood/atmospheric forecasting. Our two-stage framework provides a robust and versatile approach for accurate, physically grounded, and uncertainty-aware spatiotemporal forecasting.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

物理约束神经操作器 时空预测 不确定性量化 扩散模型
相关文章