cs.AI updates on arXiv.org 10月27日 14:22
基于SNN的多变量时间序列分类框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对多变量时间序列的脉冲神经网络(SNN)训练框架,聚焦于步进预测和低误报率下的高精度。通过EONS算法优化SNN架构和参数,实现稀疏、状态化的SNN进化。实验证明,该框架在低信噪比放射性源检测中优于PCA和深度学习,并在EEG记录的癫痫检测中表现出与深度学习相当的性能。

arXiv:2510.20997v1 Announce Type: cross Abstract: We present a general framework for training spiking neural networks (SNNs) to perform binary classification on multivariate time series, with a focus on step-wise prediction and high precision at low false alarm rates. The approach uses the Evolutionary Optimization of Neuromorphic Systems (EONS) algorithm to evolve sparse, stateful SNNs by jointly optimizing their architectures and parameters. Inputs are encoded into spike trains, and predictions are made by thresholding a single output neuron's spike counts. We also incorporate simple voting ensemble methods to improve performance and robustness. To evaluate the framework, we apply it with application-specific optimizations to the task of detecting low signal-to-noise ratio radioactive sources in gamma-ray spectral data. The resulting SNNs, with as few as 49 neurons and 66 synapses, achieve a 51.8% true positive rate (TPR) at a false alarm rate of 1/hr, outperforming PCA (42.7%) and deep learning (49.8%) baselines. A three-model any-vote ensemble increases TPR to 67.1% at the same false alarm rate. Hardware deployment on the microCaspian neuromorphic platform demonstrates 2mW power consumption and 20.2ms inference latency. We also demonstrate generalizability by applying the same framework, without domain-specific modification, to seizure detection in EEG recordings. An ensemble achieves 95% TPR with a 16% false positive rate, comparable to recent deep learning approaches with significant reduction in parameter count.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SNN 多变量时间序列 分类框架 EONS算法 癫痫检测
相关文章