cs.AI updates on arXiv.org 10月27日 14:22
VESSA:基于视频的视觉基础模型自监督微调
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出VESSA,一种针对视觉基础模型的自监督微调方法,通过利用短多视图对象视频,无需标注即可将模型适应新领域,在下游分类任务中展现显著提升。

arXiv:2510.20994v1 Announce Type: cross Abstract: Foundation models have advanced computer vision by enabling strong performance across diverse tasks through large-scale pretraining and supervised fine-tuning. However, they may underperform in domains with distribution shifts and scarce labels, where supervised fine-tuning may be infeasible. While continued self-supervised learning for model adaptation is common for generative language models, this strategy has not proven effective for vision-centric encoder models. To address this challenge, we introduce a novel formulation of self-supervised fine-tuning for vision foundation models, where the model is adapted to a new domain without requiring annotations, leveraging only short multi-view object-centric videos. Our method is referred to as VESSA: Video-based objEct-centric Self-Supervised Adaptation for visual foundation models. VESSA's training technique is based on a self-distillation paradigm, where it is critical to carefully tune prediction heads and deploy parameter-efficient adaptation techniques - otherwise, the model may quickly forget its pretrained knowledge and reach a degraded state. VESSA benefits significantly from multi-view object observations sourced from different frames in an object-centric video, efficiently learning robustness to varied capture conditions, without the need of annotations. Through comprehensive experiments with 3 vision foundation models on 2 datasets, VESSA demonstrates consistent improvements in downstream classification tasks, compared to the base models and previous adaptation methods. Code is publicly available at https://github.com/jesimonbarreto/VESSA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VESSA 视觉基础模型 自监督微调 视频学习 分类任务
相关文章