cs.AI updates on arXiv.org 10月27日 14:21
LLMs在法律推理中的长文本理解挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了大型语言模型在识别美国最高法院案例中推翻关系的能力,揭示了其在历史案件、浅层推理和复杂任务中的局限性。

arXiv:2510.20941v1 Announce Type: cross Abstract: Large language models (LLMs) with extended context windows show promise for complex legal reasoning tasks, yet their ability to understand long legal documents remains insufficiently evaluated. Developing long-context benchmarks that capture realistic, high-stakes tasks remains a significant challenge in the field, as most existing evaluations rely on simplified synthetic tasks that fail to represent the complexity of real-world document understanding. Overruling relationships are foundational to common-law doctrine and commonly found in judicial opinions. They provide a focused and important testbed for long-document legal understanding that closely resembles what legal professionals actually do. We present an assessment of state-of-the-art LLMs on identifying overruling relationships from U.S. Supreme Court cases using a dataset of 236 case pairs. Our evaluation reveals three critical limitations: (1) era sensitivity -- the models show degraded performance on historical cases compared to modern ones, revealing fundamental temporal bias in their training; (2) shallow reasoning -- models rely on shallow logical heuristics rather than deep legal comprehension; and (3) context-dependent reasoning failures -- models produce temporally impossible relationships in complex open-ended tasks despite maintaining basic temporal awareness in simple contexts. Our work contributes a benchmark that addresses the critical gap in realistic long-context evaluation, providing an environment that mirrors the complexity and stakes of actual legal reasoning tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 法律推理 文本理解 推翻关系 数据集评估
相关文章