cs.AI updates on arXiv.org 10月27日 14:21
FM-BFF-Net:医学图像分割新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为FM-BFF-Net的医学图像分割网络,结合卷积神经网络和Transformer架构,通过焦点调制和双向特征融合模块提高分割精度,实验结果表明其在多个公开数据集上优于现有方法。

arXiv:2510.20933v1 Announce Type: cross Abstract: Medical image segmentation is essential for clinical applications such as disease diagnosis, treatment planning, and disease development monitoring because it provides precise morphological and spatial information on anatomical structures that directly influence treatment decisions. Convolutional neural networks significantly impact image segmentation; however, since convolution operations are local, capturing global contextual information and long-range dependencies is still challenging. Their capacity to precisely segment structures with complicated borders and a variety of sizes is impacted by this restriction. Since transformers use self-attention methods to capture global context and long-range dependencies efficiently, integrating transformer-based architecture with CNNs is a feasible approach to overcoming these challenges. To address these challenges, we propose the Focal Modulation and Bidirectional Feature Fusion Network for Medical Image Segmentation, referred to as FM-BFF-Net in the remainder of this paper. The network combines convolutional and transformer components, employs a focal modulation attention mechanism to refine context awareness, and introduces a bidirectional feature fusion module that enables efficient interaction between encoder and decoder representations across scales. Through this design, FM-BFF-Net enhances boundary precision and robustness to variations in lesion size, shape, and contrast. Extensive experiments on eight publicly available datasets, including polyp detection, skin lesion segmentation, and ultrasound imaging, show that FM-BFF-Net consistently surpasses recent state-of-the-art methods in Jaccard index and Dice coefficient, confirming its effectiveness and adaptability for diverse medical imaging scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医学图像分割 卷积神经网络 Transformer FM-BFF-Net
相关文章