cs.AI updates on arXiv.org 10月27日 14:21
语言模型在信息搜索中的理性评估与提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于人类行为洞察的方法,对基于语言模型的信息搜索进行评估与提升。通过构建战略决策对话任务,并结合贝叶斯实验设计原理,提高了信息搜索的准确性和效率。

arXiv:2510.20886v1 Announce Type: cross Abstract: Many high-stakes applications of AI require forming data-driven hypotheses and making targeted guesses; e.g., in scientific and diagnostic settings. Given limited resources, to what extent do agents based on language models (LMs) act rationally? We develop methods to benchmark and enhance agentic information-seeking, drawing on insights from human behavior. First, we introduce a strategic decision-oriented dialogue task called Collaborative Battleship, in which a partially-informed Captain must balance exploration (asking questions) and action (taking shots), while a fully-informed Spotter must provide accurate answers under an information bottleneck. Compared to human players (N=42), we find that LM agents struggle to ground answers in context, generate informative questions, and select high-value actions. Next, to address these gaps, we develop novel Monte Carlo inference strategies for LMs based on principles from Bayesian Experimental Design (BED). For Spotter agents, our approach boosts accuracy by up to 14.7% absolute over LM-only baselines; for Captain agents, it raises expected information gain (EIG) by up to 0.227 bits (94.2% of the achievable noise ceiling). Combined, these components yield sharper targeting (+0.303-0.374 F1), and enable weaker LMs, such as Llama-4-Scout, to outperform both humans (8% -> 82% win rate) and frontier models (0% -> 67% win rate vs. GPT-5) at ~1% of GPT-5's cost. We replicate these findings on Guess Who? where our methods significantly boost accuracy (+28.3-42.4 p.p.), demonstrating their general applicability for building rational information-seeking agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语言模型 信息搜索 贝叶斯实验设计
相关文章