cs.AI updates on arXiv.org 12小时前
CESAR:音频大语言模型中的鲁棒推理
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CESAR,一种在音频大语言模型中实现鲁棒推理的方法。通过强化学习框架和奖励机制,CESAR有效解决了推理过程中的错误累积问题,并在音频推理任务中取得优异表现。

arXiv:2510.20867v1 Announce Type: cross Abstract: The role of reasoning in Audio Large Language Models remains widely underexplored, as introducing a reasoning process often degrades rather than improves performance during inference, a phenomenon we term test-time inverse scaling, where longer reasoning chains yield progressively worse results. We demonstrate that this stems not from fundamental limitations of reasoning itself, but from inadequate training: models without proper guidance for the reasoning process produce hallucinatory, inconsistent reasoning that accumulates errors over longer chains. To address these challenges, we introduce CESAR (Consistent, Effective, and Scalable Audio Reasoners), shifting from outcome verification to rewarding the reasoning process. Our online reinforcement learning framework employs Group Relative Policy Optimization with a multi-faceted reward suite that incentivizes not only correctness and format but also consistency, structured analytical patterns, causal reasoning, domain-knowledge integration, and calibrated reasoning depth. CESAR resolves test-time inverse scaling, transforming reasoning from detriments into gains while revealing model-specific ``reasoning sweet spots", where performance peaks during test-time scaling. We achieve state-of-the-art results on MMAU Test-mini, substantially outperforming Gemini 2.5 Pro and GPT-4o Audio, and near-human-level performance on MMSU reasoning tasks. Through AI-as-judge evaluations and qualitative comparisons, we provide both quantitative and qualitative validation of our improved reasoning quality. Importantly, enhanced reasoning creates synergistic effects, simultaneously improving multimodal reasoning and perception capabilities. Overall, CESAR establishes a principled method for developing robust and scalable reasoning in Audio LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音频大语言模型 推理 强化学习 CESAR 音频推理
相关文章