cs.AI updates on arXiv.org 10月27日 14:20
ProtoEEG-kNN:可解释的癫痫发作间期放电检测模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ProtoEEG-kNN的可解释模型,用于癫痫发作间期放电(IEDs)的检测。该模型通过比较EEG记录与训练集中的相似EEG,提供可视化的推理过程,在保持高准确率的同时,提供专家更偏好的解释。

arXiv:2510.20846v1 Announce Type: cross Abstract: The presence of interictal epileptiform discharges (IEDs) in electroencephalogram (EEG) recordings is a critical biomarker of epilepsy. Even trained neurologists find detecting IEDs difficult, leading many practitioners to turn to machine learning for help. While existing machine learning algorithms can achieve strong accuracy on this task, most models are uninterpretable and cannot justify their conclusions. Absent the ability to understand model reasoning, doctors cannot leverage their expertise to identify incorrect model predictions and intervene accordingly. To improve the human-model interaction, we introduce ProtoEEG-kNN, an inherently interpretable model that follows a simple case-based reasoning process. ProtoEEG-kNN reasons by comparing an EEG to similar EEGs from the training set and visually demonstrates its reasoning both in terms of IED morphology (shape) and spatial distribution (location). We show that ProtoEEG-kNN can achieve state-of-the-art accuracy in IED detection while providing explanations that experts prefer over existing approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

癫痫 可解释模型 EEG检测 机器学习 生物标志物
相关文章