cs.AI updates on arXiv.org 10月27日 14:18
AI信任度研究:AIES与FAcCT社区视角
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过分析AIES和FAcT社区的会议论文,探讨AI信任度在技术和社会伦理方面的定义、测量和验证,指出当前研究的不足,并提出综合方法以促进AI的可靠发展。

arXiv:2510.21293v1 Announce Type: new Abstract: Background: Trustworthy AI serves as a foundational pillar for two major AI ethics conferences: AIES and FAccT. However, current research often adopts techno-centric approaches, focusing primarily on technical attributes such as reliability, robustness, and fairness, while overlooking the sociotechnical dimensions critical to understanding AI trustworthiness in real-world contexts. Objectives: This scoping review aims to examine how the AIES and FAccT communities conceptualize, measure, and validate AI trustworthiness, identifying major gaps and opportunities for advancing a holistic understanding of trustworthy AI systems. Methods: We conduct a scoping review of AIES and FAccT conference proceedings to date, systematically analyzing how trustworthiness is defined, operationalized, and applied across different research domains. Our analysis focuses on conceptualization approaches, measurement methods, verification and validation techniques, application areas, and underlying values. Results: While significant progress has been made in defining technical attributes such as transparency, accountability, and robustness, our findings reveal critical gaps. Current research often predominantly emphasizes technical precision at the expense of social and ethical considerations. The sociotechnical nature of AI systems remains less explored and trustworthiness emerges as a contested concept shaped by those with the power to define it. Conclusions: An interdisciplinary approach combining technical rigor with social, cultural, and institutional considerations is essential for advancing trustworthy AI. We propose actionable measures for the AI ethics community to adopt holistic frameworks that genuinely address the complex interplay between AI systems and society, ultimately promoting responsible technological development that benefits all stakeholders.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI信任度 AIES FAcT 社会伦理 技术发展
相关文章