cs.AI updates on arXiv.org 10月27日 14:18
AI自主系统安全:OoD检测技术综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了在自主系统安全保证背景下,OoD检测技术的应用与发展,分析了其挑战与未来研究方向。

arXiv:2510.21254v1 Announce Type: new Abstract: The operational capabilities and application domains of AI-enabled autonomous systems have expanded significantly in recent years due to advances in robotics and machine learning (ML). Demonstrating the safety of autonomous systems rigorously is critical for their responsible adoption but it is challenging as it requires robust methodologies that can handle novel and uncertain situations throughout the system lifecycle, including detecting out-of-distribution (OoD) data. Thus, OOD detection is receiving increased attention from the research, development and safety engineering communities. This comprehensive review analyses OOD detection techniques within the context of safety assurance for autonomous systems, in particular in safety-critical domains. We begin by defining the relevant concepts, investigating what causes OOD and exploring the factors which make the safety assurance of autonomous systems and OOD detection challenging. Our review identifies a range of techniques which can be used throughout the ML development lifecycle and we suggest areas within the lifecycle in which they may be used to support safety assurance arguments. We discuss a number of caveats that system and safety engineers must be aware of when integrating OOD detection into system lifecycles. We conclude by outlining the challenges and future work necessary for the safe development and operation of autonomous systems across a range of domains and applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自主系统 安全保证 OoD检测 机器学习 机器人
相关文章