cs.AI updates on arXiv.org 10月24日 12:54
脑信号分析深度学习进展:神经诊断新方向
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统回顾了基于EEG/iEEG的深度学习在神经诊断中的应用,分析了不同脑部疾病下的方法与结果,并提出了标准化基准,以促进神经诊断的智能化发展。

arXiv:2502.17213v2 Announce Type: replace-cross Abstract: Neurological disorders pose major global health challenges, driving advances in brain signal analysis. Scalp electroencephalography (EEG) and intracranial EEG (iEEG) are widely used for diagnosis and monitoring. However, dataset heterogeneity and task variations hinder the development of robust deep learning solutions. This review systematically examines recent advances in deep learning approaches for EEG/iEEG-based neurological diagnostics, focusing on applications across 7 neurological conditions using 46 datasets. For each condition, we review representative methods and their quantitative results, integrating performance comparisons with analyses of data usage, model design, and task-specific adaptations, while highlighting the role of pre-trained multi-task models in achieving scalable, generalizable solutions. Finally, we propose a standardized benchmark to evaluate models across diverse datasets and improve reproducibility, emphasizing how recent innovations are transforming neurological diagnostics toward intelligent, adaptable healthcare systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑信号分析 深度学习 神经诊断 EEG/iEEG 标准化基准
相关文章