cs.AI updates on arXiv.org 10月24日 12:51
针对LLM公平性的评估方法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对大型语言模型(LLM)公平性的评估方法,通过构建一个与真实应用相关的数据集,参数化公平属性与性别形容词和产品类别,以识别LLM在质量、真实性、安全性和公平性方面的差距。

arXiv:2510.20782v1 Announce Type: cross Abstract: Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 公平性评估 数据集 LLM评价
相关文章