cs.AI updates on arXiv.org 10月24日 12:29
虚拟环境沉浸式听觉体验建模研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为resounding的任务,旨在通过从稀疏的测量发射位置估计任意发射位置的房间脉冲响应,类似于视觉中的重照明问题。利用互易性属性,引入了Versa,一种基于物理的声场学习方法,以促进声场学习。实验结果表明,Versa在模拟和真实世界数据集上显著提高了声场学习的性能,并显著提升了沉浸式空间声音体验。

arXiv:2510.20602v1 Announce Type: cross Abstract: Achieving immersive auditory experiences in virtual environments requires flexible sound modeling that supports dynamic source positions. In this paper, we introduce a task called resounding, which aims to estimate room impulse responses at arbitrary emitter location from a sparse set of measured emitter positions, analogous to the relighting problem in vision. We leverage the reciprocity property and introduce Versa, a physics-inspired approach to facilitating acoustic field learning. Our method creates physically valid samples with dense virtual emitter positions by exchanging emitter and listener poses. We also identify challenges in deploying reciprocity due to emitter/listener gain patterns and propose a self-supervised learning approach to address them. Results show that Versa substantially improve the performance of acoustic field learning on both simulated and real-world datasets across different metrics. Perceptual user studies show that Versa can greatly improve the immersive spatial sound experience. Code, dataset and demo videos are available on the project website: https://waves.seas.upenn.edu/projects/versa.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

虚拟环境 沉浸式听觉体验 声场学习 互易性 房间脉冲响应
相关文章