cs.AI updates on arXiv.org 10月24日 12:25
跨平台无人机导航解决方案
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对RoboSense 2025 Track 4竞赛的解决方案,通过解决跨平台异构性和领域差距问题,实现高效的多模态无人机导航。

arXiv:2510.20291v1 Announce Type: cross Abstract: We present a winning solution to RoboSense 2025 Track 4: Cross-Modal Drone Navigation. The task retrieves the most relevant geo-referenced image from a large multi-platform corpus (satellite/drone/ground) given a natural-language query. Two obstacles are severe inter-platform heterogeneity and a domain gap between generic training descriptions and platform-specific test queries. We mitigate these with a domain-aligned preprocessing pipeline and a Mixture-of-Experts (MoE) framework: (i) platform-wise partitioning, satellite augmentation, and removal of orientation words; (ii) an LLM-based caption refinement pipeline to align textual semantics with the distinct visual characteristics of each platform. Using BGE-M3 (text) and EVA-CLIP (image), we train three platform experts using a progressive two-stage, hard-negative mining strategy to enhance discriminative power, and fuse their scores at inference. The system tops the official leaderboard, demonstrating robust cross-modal geo-localization under heterogeneous viewpoints.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

无人机导航 多模态 跨平台 解决方案 RoboSense
相关文章