arXiv:2510.20272v1 Announce Type: cross Abstract: While chain-of-thought prompting with Best-of-N (BoN) selection has become popular for mathematical reasoning in large language models (LLMs), its linear structure fails to capture the branching and exploratory nature of complex problem-solving. In this work, we propose an adaptive algorithm to maximize process reward model (PRM) scores over the intractable action space, and investigate whether PRM-guided tree search can improve mathematical reasoning by exploring multiple partial solution paths. Across $23$ diverse mathematical problems using Qwen2.5-Math-7B-Instruct with its associated PRM as a case study, we find that: (1) PRM-guided tree search shows no statistically significant improvements over BoN despite higher costs, (2) Monte Carlo tree search and beam search outperform other PRM-guided tree search methods, (3) PRMs poorly approximate state values and their reliability degrades with reasoning depth, and (4) PRMs generalize poorly out of distribution. This underperformance stems from tree search's greater reliance on unreliable PRM scores, suggesting different reward modeling is necessary before tree search can effectively enhance mathematical reasoning in LLMs.
