cs.AI updates on arXiv.org 10月24日 12:23
NSync:云基础设施自动化IaC同步系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出NSync,一个用于云基础设施IaC自动同步的系统。系统通过API追踪检测基础设施漂移,并利用LLM进行高阶意图推断,以更新IaC配置。实验表明,NSync在准确性和效率上优于基线。

arXiv:2510.20211v1 Announce Type: cross Abstract: Cloud infrastructure is managed through a mix of interfaces -- traditionally, cloud consoles, command-line interfaces (CLI), and SDKs are the tools of choice. Recently, Infrastructure-as-Code/IaC frameworks (e.g., Terraform) have quickly gained popularity. Unlike conventional tools, IaC~frameworks encode the infrastructure in a "source-of-truth" configuration. They are capable of automatically carrying out modifications to the cloud -- deploying, updating, or destroying resources -- to bring the actual infrastructure into alignment with the IaC configuration. However, when IaC is used alongside consoles, CLIs, or SDKs, it loses visibility into external changes, causing infrastructure drift, where the configuration becomes outdated, and later IaC operations may undo valid updates or trigger errors. We present NSync, an automated system for IaC reconciliation that propagates out-of-band changes back into the IaC program. Our key insight is that infrastructure changes eventually all occur via cloud API invocations -- the lowest layer for cloud management operations. NSync gleans insights from API traces to detect drift (i.e., non-IaC changes) and reconcile it (i.e., update the IaC configuration to capture the changes). It employs an agentic architecture that leverages LLMs to infer high-level intents from noisy API sequences, synthesize targeted IaC updates using specialized tools, and continually improve through a self-evolving knowledge base of past reconciliations. We further introduce a novel evaluation pipeline for injecting realistic drifts into cloud infrastructure and assessing reconciliation performance. Experiments across five real-world Terraform projects and 372 drift scenarios show that NSync outperforms the baseline both in terms of accuracy (from 0.71 to 0.97 pass@3) and token efficiency (1.47$\times$ improvement).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

云基础设施 IaC同步 自动化系统 LLM API追踪
相关文章