cs.AI updates on arXiv.org 10月24日 12:23
犬早期癌症检测工具研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究评估了利用金毛寻回犬终身研究数据集进行癌症风险分类的可行性,通过比较多种机器学习模型、特征选择方法和数据平衡技术,发现虽然存在癌症信号,但数据不足以作为可靠的临床诊断工具。

arXiv:2510.20209v1 Announce Type: cross Abstract: The development of accessible screening tools for early cancer detection in dogs represents a significant challenge in veterinary medicine. Routine laboratory data offer a promising, low-cost source for such tools, but their utility is hampered by the non-specificity of individual biomarkers and the severe class imbalance inherent in screening populations. This study assesses the feasibility of cancer risk classification using the Golden Retriever Lifetime Study (GRLS) cohort under real-world constraints, including the grouping of diverse cancer types and the inclusion of post-diagnosis samples. A comprehensive benchmark evaluation was conducted, systematically comparing 126 analytical pipelines that comprised various machine learning models, feature selection methods, and data balancing techniques. Data were partitioned at the patient level to prevent leakage. The optimal model, a Logistic Regression classifier with class weighting and recursive feature elimination, demonstrated moderate ranking ability (AUROC = 0.815; 95% CI: 0.793-0.836) but poor clinical classification performance (F1-score = 0.25, Positive Predictive Value = 0.15). While a high Negative Predictive Value (0.98) was achieved, insufficient recall (0.79) precludes its use as a reliable rule-out test. Interpretability analysis with SHapley Additive exPlanations (SHAP) revealed that predictions were driven by non-specific features like age and markers of inflammation and anemia. It is concluded that while a statistically detectable cancer signal exists in routine lab data, it is too weak and confounded for clinically reliable discrimination from normal aging or other inflammatory conditions. This work establishes a critical performance ceiling for this data modality in isolation and underscores that meaningful progress in computational veterinary oncology will require integration of multi-modal data sources.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

癌症检测 犬类健康 机器学习 数据分析 兽医医学
相关文章