cs.AI updates on arXiv.org 10月24日 12:23
IB-GAN:基于信息瓶颈的生成对抗网络模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于信息瓶颈(IB)框架的生成对抗网络(GAN)模型,命名为IB-GAN。该模型在InfoGAN的基础上进行改进,通过利用生成器的中间层来约束输入和生成输出之间的互信息,实现了解耦表示学习。实验结果表明,IB-GAN在解耦度、样本质量和多样性方面均优于InfoGAN和eta-VAEs。

arXiv:2510.20165v1 Announce Type: cross Abstract: We propose a new GAN-based unsupervised model for disentangled representation learning. The new model is discovered in an attempt to utilize the Information Bottleneck (IB) framework to the optimization of GAN, thereby named IB-GAN. The architecture of IB-GAN is partially similar to that of InfoGAN but has a critical difference; an intermediate layer of the generator is leveraged to constrain the mutual information between the input and the generated output. The intermediate stochastic layer can serve as a learnable latent distribution that is trained with the generator jointly in an end-to-end fashion. As a result, the generator of IB-GAN can harness the latent space in a disentangled and interpretable manner. With the experiments on dSprites and Color-dSprites dataset, we demonstrate that IB-GAN achieves competitive disentanglement scores to those of state-of-the-art \b{eta}-VAEs and outperforms InfoGAN. Moreover, the visual quality and the diversity of samples generated by IB-GAN are often better than those by \b{eta}-VAEs and Info-GAN in terms of FID score on CelebA and 3D Chairs dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GAN 信息瓶颈 解耦表示学习 IB-GAN InfoGAN
相关文章