cs.AI updates on arXiv.org 10月24日 12:19
SSL-SE-EEG:提升脑电图分析性能的新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合自监督学习和Squeeze-and-Excitation网络的脑电图分析框架SSL-SE-EEG,通过将EEG信号转化为2D图像,提高特征提取和噪声鲁棒性,降低对标注数据的依赖,在多个数据集上实现最先进的准确率,适用于实时脑机接口应用。

arXiv:2510.19829v1 Announce Type: cross Abstract: Electroencephalography (EEG) plays a crucial role in brain-computer interfaces (BCIs) and neurological diagnostics, but its real-world deployment faces challenges due to noise artifacts, missing data, and high annotation costs. We introduce SSL-SE-EEG, a framework that integrates Self-Supervised Learning (SSL) with Squeeze-and-Excitation Networks (SE-Nets) to enhance feature extraction, improve noise robustness, and reduce reliance on labeled data. Unlike conventional EEG processing techniques, SSL-SE-EEG} transforms EEG signals into structured 2D image representations, suitable for deep learning. Experimental validation on MindBigData, TUH-AB, SEED-IV and BCI-IV datasets demonstrates state-of-the-art accuracy (91% in MindBigData, 85% in TUH-AB), making it well-suited for real-time BCI applications. By enabling low-power, scalable EEG processing, SSL-SE-EEG presents a promising solution for biomedical signal analysis, neural engineering, and next-generation BCIs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑电图 自监督学习 Squeeze-and-Excitation网络 脑机接口 深度学习
相关文章