cs.AI updates on arXiv.org 10月24日 12:19
SLYKLatent:提升注视估计的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SLYKLatent,一种解决数据集中外观不稳定性挑战的注视估计方法。通过自监督学习和改进的训练模型,SLYKLatent在多个基准数据集上显著提升了注视估计的准确性。

arXiv:2402.01555v2 Announce Type: cross Abstract: In this research, we present SLYKLatent, a novel approach for enhancing gaze estimation by addressing appearance instability challenges in datasets due to aleatoric uncertainties, covariant shifts, and test domain generalization. SLYKLatent utilizes Self-Supervised Learning for initial training with facial expression datasets, followed by refinement with a patch-based tri-branch network and an inverse explained variance-weighted training loss function. Our evaluation on benchmark datasets achieves a 10.9% improvement on Gaze360, supersedes top MPIIFaceGaze results with 3.8%, and leads on a subset of ETH-XGaze by 11.6%, surpassing existing methods by significant margins. Adaptability tests on RAF-DB and Affectnet show 86.4% and 60.9% accuracies, respectively. Ablation studies confirm the effectiveness of SLYKLatent's novel components.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

注视估计 数据不稳定性 自监督学习 训练模型 准确性提升
相关文章