cs.AI updates on arXiv.org 10月24日 12:18
IKnow框架:基于文本的持续预训练新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出IKnow框架,通过在指令-响应对话格式中构建新颖的自监督目标,利用文本中的领域知识进行深层语义编码,实现大型语言模型在未标记测试数据上的持续预训练。

arXiv:2510.20377v1 Announce Type: new Abstract: Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 持续预训练 自监督学习 文本领域知识 指令-响应对话
相关文章