cs.AI updates on arXiv.org 10月24日 12:15
细粒度框架提升LLM网络代理效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Branch-and-Browse的细粒度网络代理框架,旨在提升基于大型语言模型(LLMs)的代理在信息检索、报告生成和在线交易等目标导向任务中的表现。该框架通过结构化推理-执行、上下文记忆和高效执行,实现了可控的多分支推理、高效的网络状态重放和页面动作记忆的共享,有效提升了任务成功率并减少了执行时间。

arXiv:2510.19838v1 Announce Type: new Abstract: Autonomous web agents powered by large language models (LLMs) show strong potential for performing goal-oriented tasks such as information retrieval, report generation, and online transactions. These agents mark a key step toward practical embodied reasoning in open web environments. However, existing approaches remain limited in reasoning depth and efficiency: vanilla linear methods fail at multi-step reasoning and lack effective backtracking, while other search strategies are coarse-grained and computationally costly. We introduce Branch-and-Browse, a fine-grained web agent framework that unifies structured reasoning-acting, contextual memory, and efficient execution. It (i) employs explicit subtask management with tree-structured exploration for controllable multi-branch reasoning, (ii) bootstraps exploration through efficient web state replay with background reasoning, and (iii) leverages a page action memory to share explored actions within and across sessions. On the WebArena benchmark, Branch-and-Browse achieves a task success rate of 35.8\% and reduces execution time by up to 40.4\% relative to state-of-the-art methods. These results demonstrate that Branch-and-Browse is a reliable and efficient framework for LLM-based web agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 网络代理 细粒度框架 推理-执行 效率提升
相关文章