cs.AI updates on arXiv.org 10月23日 12:45
FairGen:文本到图像生成模型中的公平性提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FairGen,一种自适应的潜在引导机制,旨在减轻文本到图像生成模型中的生成偏差,同时保持生成质量。通过Holistic Bias Evaluation基准和消融实验,证明了其在减少偏差方面的有效性。

arXiv:2503.01872v2 Announce Type: replace-cross Abstract: Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., "male" for "gender") in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Furthermore, we address the limitations of existing datasets by introducing the Holistic Bias Evaluation (HBE) benchmark, which covers diverse domains and incorporates complex prompts to assess bias more comprehensively. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen's ability to flexibly control the output distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本到图像生成 生成偏差 公平性 FairGen 模型评估
相关文章