cs.AI updates on arXiv.org 10月23日 12:44
CUPID:基于临床图像的高质量PD-DL训练新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CUPID的新方法,利用临床重建图像进行高质量PD-DL训练,解决了现有方法对原始k空间测量数据依赖的问题,为偏远地区提供快速MRI服务。

arXiv:2411.13022v3 Announce Type: replace-cross Abstract: Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Though PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. A key challenge is generalization to rare pathologies or different populations, noted in multiple studies, with fine-tuning on target populations suggested for improvement. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and under-resourced areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates output quality with a compressibility-based approach while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show CUPID achieves similar quality to established PD-DL training that requires k-space data while outperforming compressed sensing (CS) and diffusion-based generative methods. We further demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden. As an approach that radically deviates from existing strategies, CUPID presents an opportunity to provide broader access to fast MRI for remote and rural populations in an attempt to reduce the obstacles associated with this expensive imaging modality.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PD-DL 临床图像 快速MRI CUPID 训练方法
相关文章