cs.AI updates on arXiv.org 10月23日 12:23
透明模型结合LLM提升公共部门AI应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨透明决策树模型与大型语言模型(LLMs)结合,提高预测准确性和可解释性,以改善公共和非营利组织AI工具的应用。

arXiv:2510.19799v1 Announce Type: cross Abstract: Public and nonprofit organizations often hesitate to adopt AI tools because most models are opaque even though standard approaches typically analyze aggregate patterns rather than offering actionable, case-level guidance. This study tests a practitioner-in-the-loop workflow that pairs transparent decision-tree models with large language models (LLMs) to improve predictive accuracy, interpretability, and the generation of practical insights. Using data from an ongoing college-success program, we build interpretable decision trees to surface key predictors. We then provide each tree's structure to an LLM, enabling it to reproduce case-level predictions grounded in the transparent models. Practitioners participate throughout feature engineering, model design, explanation review, and usability assessment, ensuring that field expertise informs the analysis at every stage. Results show that integrating transparent models, LLMs, and practitioner input yields accurate, trustworthy, and actionable case-level evaluations, offering a viable pathway for responsible AI adoption in the public and nonprofit sectors.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI模型 透明决策树 LLM 公共部门 非营利组织
相关文章