cs.AI updates on arXiv.org 4小时前
增强型时间自差分模型在ICU数据中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于合成ICU时间序列数据的新型框架,用于训练和评估预测模型,并在MIMIC-III和eICU数据集上进行了测试,结果表明该模型在降低真实-合成和真实-真实评估差距方面表现优异,同时保护了患者隐私。

arXiv:2510.19728v1 Announce Type: cross Abstract: We present a novel framework for leveraging synthetic ICU time-series data not only to train but also to rigorously and trustworthily evaluate predictive models, both at the population level and within fine-grained demographic subgroups. Building on prior diffusion and VAE-based generators (TimeDiff, HealthGen, TimeAutoDiff), we introduce \textit{Enhanced TimeAutoDiff}, which augments the latent diffusion objective with distribution-alignment penalties. We extensively benchmark all models on MIMIC-III and eICU, on 24-hour mortality and binary length-of-stay tasks. Our results show that Enhanced TimeAutoDiff reduces the gap between real-on-synthetic and real-on-real evaluation (``TRTS gap'') by over 70\%, achieving $\Delta{TRTS} \leq 0.014$ AUROC, while preserving training utility ($\Delta{TSTR} \approx 0.01$). Crucially, for 32 intersectional subgroups, large synthetic cohorts cut subgroup-level AUROC estimation error by up to 50\% relative to small real test sets, and outperform them in 72--84\% of subgroups. This work provides a practical, privacy-preserving roadmap for trustworthy, granular model evaluation in critical care, enabling robust and reliable performance analysis across diverse patient populations without exposing sensitive EHR data, contributing to the overall trustworthiness of Medical AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ICU数据 预测模型 时间序列 合成数据 模型评估
相关文章