cs.AI updates on arXiv.org 10月23日 12:22
零样本分类中提示效果与内部表示关系研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过一系列实验探究了提示技术在零样本分类中的应用及其与内部表示质量的关系。研究发现,提示对内部表示质量有影响,但提示的相关性与目标任务的匹配度并不总是相关,挑战了提示越相关越好这一假设。

arXiv:2510.19694v1 Announce Type: cross Abstract: Prompting is a common approach for leveraging LMs in zero-shot settings. However, the underlying mechanisms that enable LMs to perform diverse tasks without task-specific supervision remain poorly understood. Studying the relationship between prompting and the quality of internal representations can shed light on how pre-trained embeddings may support in-context task solving. In this empirical study, we conduct a series of probing experiments on prompt embeddings, analyzing various combinations of prompt templates for zero-shot classification. Our findings show that while prompting affects the quality of representations, these changes do not consistently correlate with the relevance of the prompts to the target task. This result challenges the assumption that more relevant prompts necessarily lead to better representations. We further analyze potential factors that may contribute to this unexpected behavior.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

提示技术 零样本分类 内部表示 相关度 实验研究
相关文章