cs.AI updates on arXiv.org 前天 12:22
MLLMs视觉处理机制研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究多模态大语言模型(MLLMs)在视觉语言任务上的表现及其视觉处理机制。通过经典视觉搜索范式,发现MLLMs在颜色或大小基础上的单特征搜索中表现出类似于人类的“pop-out”效应,并在多特征搜索中存在容量限制。研究还发现MLLMs能够像人类一样将自然场景先验如光照方向纳入物体表征。

arXiv:2510.19678v1 Announce Type: cross Abstract: Multimodal large language models (MLLMs) achieve strong performance on vision-language tasks, yet their visual processing is opaque. Most black-box evaluations measure task accuracy, but reveal little about underlying mechanisms. Drawing on cognitive psychology, we adapt classic visual search paradigms -- originally developed to study human perception -- to test whether MLLMs exhibit the ``pop-out'' effect, where salient visual features are detected independently of distractor set size. Using controlled experiments targeting colour, size and lighting features, we find that advanced MLLMs exhibit human-like pop-out effects in colour or size-based disjunctive (single feature) search, as well as capacity limits for conjunctive (multiple feature) search. We also find evidence to suggest that MLLMs, like humans, incorporate natural scene priors such as lighting direction into object representations. We reinforce our findings using targeted fine-tuning and mechanistic interpretability analyses. Our work shows how visual search can serve as a cognitively grounded diagnostic tool for evaluating perceptual capabilities in MLLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MLLMs 视觉处理 认知心理学 视觉搜索
相关文章