cs.AI updates on arXiv.org 10月23日 12:22
TraDy:高效迁移学习新方案
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为TraDy的迁移学习新方案,通过动态随机通道选择和层重要性更新策略,在保持严格内存约束的情况下,实现了深度神经网络的高效训练。

arXiv:2510.19675v1 Announce Type: cross Abstract: Memory-efficient training of deep neural networks has become increasingly important as models grow larger while deployment environments impose strict resource constraints. We propose TraDy, a novel transfer learning scheme leveraging two key insights: layer importance for updates is architecture-dependent and determinable a priori, while dynamic stochastic channel selection provides superior gradient approximation compared to static approaches. We introduce a dynamic channel selection approach that stochastically resamples channels between epochs within preselected layers. Extensive experiments demonstrate TraDy achieves state-of-the-art performance across various downstream tasks and architectures while maintaining strict memory constraints, achieving up to 99% activation sparsity, 95% weight derivative sparsity, and 97% reduction in FLOPs for weight derivative computation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

迁移学习 高效训练 动态随机通道选择
相关文章