cs.AI updates on arXiv.org 10月23日 12:21
机器学习优化QUBO问题性能超越经典算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了机器学习在组合优化问题中的应用,通过全局退火蒙特卡洛算法,将机器学习与经典算法结合,在解决三维伊辛自旋玻璃中寻找最小能量配置的QUBO问题上取得突破,展示了机器学习辅助优化方法在组合优化领域的潜力。

arXiv:2510.19544v1 Announce Type: cross Abstract: Combinatorial optimization problems are central to both practical applications and the development of optimization methods. While classical and quantum algorithms have been refined over decades, machine learning-assisted approaches are comparatively recent and have not yet consistently outperformed simple, state-of-the-art classical methods. Here, we focus on a class of Quadratic Unconstrained Binary Optimization (QUBO) problems, specifically the challenge of finding minimum energy configurations in three-dimensional Ising spin glasses. We use a Global Annealing Monte Carlo algorithm that integrates standard local moves with global moves proposed via machine learning. We show that local moves play a crucial role in achieving optimal performance. Benchmarking against Simulated Annealing and Population Annealing, we demonstrate that Global Annealing not only surpasses the performance of Simulated Annealing but also exhibits greater robustness than Population Annealing, maintaining effectiveness across problem hardness and system size without hyperparameter tuning. These results provide, to our knowledge, the first clear and robust evidence that a machine learning-assisted optimization method can exceed the capabilities of classical state-of-the-art techniques in a combinatorial optimization setting.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 组合优化 QUBO问题 退火算法 性能提升
相关文章