cs.AI updates on arXiv.org 10月23日 12:21
基于LLM的人行行为建模:多模式交通解决方案
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种在复杂多模式交通系统中模拟真实人类移动行为的架构,通过在法国图卢兹的案例研究中验证。应用大型语言模型(LLMs)在基于代理的模拟中捕捉实际城市环境中的决策,结合GAMA平台和OpenTripPlanner,展示生成代理在交通决策过程中的性能。

arXiv:2510.19497v1 Announce Type: cross Abstract: Modeling realistic human behaviour to understand people's mode choices in order to propose personalised mobility solutions remains challenging. This paper presents an architecture for modeling realistic human mobility behavior in complex multimodal transport systems, demonstrated through a case study in Toulouse, France. We apply Large Language Models (LLMs) within an agent-based simulation to capture decision-making in a real urban setting. The framework integrates the GAMA simulation platform with an LLM-based generative agent, along with General Transit Feed Specification (GTFS) data for public transport, and OpenTripPlanner for multimodal routing. GAMA platform models the interactive transport environment, providing visualization and dynamic agent interactions while eliminating the need to construct the simulation environment from scratch. This design enables a stronger focus on developing generative agents and evaluating their performance in transport decision-making processes. Over a simulated month, results show that agents not only make context-aware transport decisions but also form habits over time. We conclude that combining LLMs with agent-based simulation offers a promising direction for advancing intelligent transportation systems and personalised multimodal mobility solutions. We also discuss some limitations of this approach and outline future work on scaling to larger regions, integrating real-time data, and refining memory models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 多模式交通 模拟行为 智能交通系统 个性化解决方案
相关文章