cs.AI updates on arXiv.org 10月23日 12:20
利用非专家数据增强机器人模仿学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用非专家数据进行机器人模仿学习的策略,通过离线强化学习算法优化非专家数据利用,提升模仿学习策略的鲁棒性和泛化能力。

arXiv:2510.19495v1 Announce Type: cross Abstract: Imitation learning has proven effective for training robots to perform complex tasks from expert human demonstrations. However, it remains limited by its reliance on high-quality, task-specific data, restricting adaptability to the diverse range of real-world object configurations and scenarios. In contrast, non-expert data -- such as play data, suboptimal demonstrations, partial task completions, or rollouts from suboptimal policies -- can offer broader coverage and lower collection costs. However, conventional imitation learning approaches fail to utilize this data effectively. To address these challenges, we posit that with right design decisions, offline reinforcement learning can be used as a tool to harness non-expert data to enhance the performance of imitation learning policies. We show that while standard offline RL approaches can be ineffective at actually leveraging non-expert data under the sparse data coverage settings typically encountered in the real world, simple algorithmic modifications can allow for the utilization of this data, without significant additional assumptions. Our approach shows that broadening the support of the policy distribution can allow imitation algorithms augmented by offline RL to solve tasks robustly, showing considerably enhanced recovery and generalization behavior. In manipulation tasks, these innovations significantly increase the range of initial conditions where learned policies are successful when non-expert data is incorporated. Moreover, we show that these methods are able to leverage all collected data, including partial or suboptimal demonstrations, to bolster task-directed policy performance. This underscores the importance of algorithmic techniques for using non-expert data for robust policy learning in robotics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人模仿学习 非专家数据 离线强化学习 鲁棒性 泛化能力
相关文章