cs.AI updates on arXiv.org 10月23日 12:20
FairNet:动态公平校正框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FairNet,一种针对机器学习模型公平性的动态实例级校正框架,通过结合偏置检测与条件低秩自适应,实现针对偏置实例的公平性校正,同时保持无偏置实例的性能。

arXiv:2510.19421v1 Announce Type: cross Abstract: Ensuring fairness in machine learning models is a critical challenge. Existing debiasing methods often compromise performance, rely on static correction strategies, and struggle with data sparsity, particularly within minority groups. Furthermore, their utilization of sensitive attributes is often suboptimal, either depending excessively on complete attribute labeling or disregarding these attributes entirely. To overcome these limitations, we propose FairNet, a novel framework for dynamic, instance-level fairness correction. FairNet integrates a bias detector with conditional low-rank adaptation (LoRA), which enables selective activation of the fairness correction mechanism exclusively for instances identified as biased, and thereby preserve performance on unbiased instances. A key contribution is a new contrastive loss function for training the LoRA module, specifically designed to minimize intra-class representation disparities across different sensitive groups and effectively address underfitting in minority groups. The FairNet framework can flexibly handle scenarios with complete, partial, or entirely absent sensitive attribute labels. Theoretical analysis confirms that, under moderate TPR/FPR for the bias detector, FairNet can enhance the performance of the worst group without diminishing overall model performance, and potentially yield slight performance improvements. Comprehensive empirical evaluations across diverse vision and language benchmarks validate the effectiveness of FairNet.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 公平性校正 FairNet
相关文章