cs.AI updates on arXiv.org 10月23日 12:19
半监督框架提升L2D系统数据效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于元学习的半监督框架,通过少量演示数据生成专家特定嵌入,用于生成大量伪标签进行训练,并实现测试时对新手快速适应,有效提升学习到延迟(L2D)系统的数据效率。

arXiv:2510.19351v1 Announce Type: cross Abstract: This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

L2D系统 数据效率 半监督学习 元学习 自适应
相关文章