cs.AI updates on arXiv.org 10月23日 12:19
时间序列模型预测形式与实际应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了时间序列基础模型(TSFMs)的预测形式,指出其预测类型对实际应用的重要性,并分析了不同预测类型之间的转换及适用场景。

arXiv:2510.19345v1 Announce Type: cross Abstract: Time-series foundation models (TSFMs) achieve strong forecast accuracy, yet accuracy alone does not determine practical value. The form of a forecast -- point, quantile, parametric, or trajectory ensemble -- fundamentally constrains which operational tasks it can support. We survey recent TSFMs and find that two-thirds produce only point or parametric forecasts, while many operational tasks require trajectory ensembles that preserve temporal dependence. We establish when forecast types can be converted and when they cannot: trajectory ensembles convert to simpler forms via marginalization without additional assumptions, but the reverse requires imposing temporal dependence through copulas or conformal methods. We prove that marginals cannot determine path-dependent event probabilities -- infinitely many joint distributions share identical marginals but yield different answers to operational questions. We map six fundamental forecasting tasks to minimal sufficient forecast types and provide a task-aligned evaluation framework. Our analysis clarifies when forecast type, not accuracy, differentiates practical utility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列模型 预测形式 实际应用 模型转换 评估框架
相关文章