cs.AI updates on arXiv.org 10月23日 12:17
FnRGNN:提升GNN节点回归公平性的新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FnRGNN,一个针对GNN节点回归的公平性提升框架。通过结构级、表示级和预测级的三层干预,实现复杂图拓扑下的鲁棒公平性。实验表明,FnRGNN在降低组内差异的同时,不牺牲性能。

arXiv:2510.19257v1 Announce Type: cross Abstract: Graph Neural Networks (GNNs) excel at learning from structured data, yet fairness in regression tasks remains underexplored. Existing approaches mainly target classification and representation-level debiasing, which cannot fully address the continuous nature of node-level regression. We propose FnRGNN, a fairness-aware in-processing framework for GNN-based node regression that applies interventions at three levels: (i) structure-level edge reweighting, (ii) representation-level alignment via MMD, and (iii) prediction-level normalization through Sinkhorn-based distribution matching. This multi-level strategy ensures robust fairness under complex graph topologies. Experiments on four real-world datasets demonstrate that FnRGNN reduces group disparities without sacrificing performance. Code is available at https://github.com/sybeam27/FnRGNN.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Graph Neural Networks Fairness Node Regression Intervention GNN-based
相关文章