cs.AI updates on arXiv.org 10月23日 12:13
AI加速催化研究:多尺度模型与实验结合
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了人工智能在异相催化研究中的应用,通过加速模拟和材料发现,结合多尺度模型和实验数据,解决动力学与可观测量之间的“多对一”挑战。机器学习力场、微动力学和反应器建模的进步,使得化学空间的快速探索成为可能,同时,操作性和瞬态数据提供了前所未有的洞察。然而,数据质量和模型复杂性问题限制了机理发现。生成式和代理式AI可以自动化模型生成、量化不确定性和理论实验耦合,实现可解释、可重复和可转移的催化系统理解。

arXiv:2510.18911v1 Announce Type: cross Abstract: Artificial intelligence (AI) is influencing heterogeneous catalysis research by accelerating simulations and materials discovery. A key frontier is integrating AI with multiscale models and multimodal experiments to address the "many-to-one" challenge of linking intrinsic kinetics to observables. Advances in machine-learned force fields, microkinetics, and reactor modeling enable rapid exploration of chemical spaces, while operando and transient data provide unprecedented insight. Yet, inconsistent data quality and model complexity limit mechanistic discovery. Generative and agentic AI can automate model generation, quantify uncertainty, and couple theory with experiment, realizing "self-driving models" that produce interpretable, reproducible, and transferable understanding of catalytic systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 催化研究 多尺度模型 实验数据 机器学习
相关文章