cs.AI updates on arXiv.org 10月22日 12:26
新型学习系统设计突破机器学习局限
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于进化发育生物学原理的新型机器学习系统设计,克服了当前机器学习在持续学习、信息重用、可理解性和与有意行为整合等方面的关键局限。系统包括模型构建、目标导向动作规划和行为封装机制,并在简单测试环境和MNIST数据集上展示了其有效性。

arXiv:2502.13935v2 Announce Type: replace-cross Abstract: Inherent limitations of contemporary machine learning systems in crucial areas -- importantly in continual learning, information reuse, comprehensibility, and integration with deliberate behavior -- are receiving increasing attention. To address these challenges, we introduce a system design, fueled by a novel learning approach conceptually grounded in principles of evolutionary developmental biology, that overcomes key limitations of current methods. Our design comprises three core components: The Modeller, a gradient-free learning mechanism inherently capable of continual learning and structural adaptation; a planner for goal-directed action over learned models; and a behavior encapsulation mechanism that can decompose complex behaviors into a hierarchical structure. We demonstrate proof-of-principle operation in a simple test environment. Additionally, we extend our modeling framework to higher-dimensional network-structured spaces, using MNIST for a shape detection task. Our framework shows promise in overcoming multiple major limitations of contemporary machine learning systems simultaneously and in an organic manner.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 持续学习 进化发育生物学 系统设计 行为封装
相关文章