cs.AI updates on arXiv.org 10月22日 12:26
图基推荐系统可解释性研究综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了可解释推荐系统的最新进展,包括图基推荐系统的可解释性方法,基于学习、解释和解释类型三个方面进行分类,并探讨了常用数据集、可解释性评估方法和未来研究方向。

arXiv:2408.00166v2 Announce Type: replace-cross Abstract: Explainability of recommender systems has become essential to ensure users' trust and satisfaction. Various types of explainable recommender systems have been proposed including explainable graph-based recommender systems. This review paper discusses state-of-the-art approaches of these systems and categorizes them based on three aspects: learning methods, explaining methods, and explanation types. It also explores the commonly used datasets, explainability evaluation methods, and future directions of this research area. Compared with the existing review papers, this paper focuses on explainability based on graphs and covers the topics required for developing novel explainable graph-based recommender systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推荐系统 可解释性 图基推荐系统 学习方法 解释方法
相关文章