cs.AI updates on arXiv.org 10月22日 12:24
ε-Seg:基于HVAE的稀疏标注生物图像分割方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于层次变分自编码器(HVAE)的稀疏标注生物图像分割方法ε-Seg,通过中心区域掩码、稀疏标签对比学习、高斯混合模型先验和聚类自由标签预测,实现复杂生物图像数据的分割。

arXiv:2510.18637v1 Announce Type: cross Abstract: Semantic segmentation of electron microscopy (EM) images of biological samples remains a challenge in the life sciences. EM data captures details of biological structures, sometimes with such complexity that even human observers can find it overwhelming. We introduce {\epsilon}-Seg, a method based on hierarchical variational autoencoders (HVAEs), employing center-region masking, sparse label contrastive learning (CL), a Gaussian mixture model (GMM) prior, and clustering-free label prediction. Center-region masking and the inpainting loss encourage the model to learn robust and representative embeddings to distinguish the desired classes, even if training labels are sparse (0.05% of the total image data or less). For optimal performance, we employ CL and a GMM prior to shape the latent space of the HVAE such that encoded input patches tend to cluster wrt. the semantic classes we wish to distinguish. Finally, instead of clustering latent embeddings for semantic segmentation, we propose a MLP semantic segmentation head to directly predict class labels from latent embeddings. We show empirical results of {\epsilon}-Seg and baseline methods on 2 dense EM datasets of biological tissues and demonstrate the applicability of our method also on fluorescence microscopy data. Our results show that {\epsilon}-Seg is capable of achieving competitive sparsely-supervised segmentation results on complex biological image data, even if only limited amounts of training labels are available.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生物图像分割 稀疏标注 层次变分自编码器 对比学习 高斯混合模型
相关文章